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Outline

I Vorticity and spin physics in heavy-ion collisions

I Quantum kinetic theory

I Spin hydrodynamics

I Polarization observable in heavy-ion collisions
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Rotation and polarization

I Condensed matter: Barnett effect

Picture by Andrey Sadofyev

Ferromagnet gets magnetized when it rotates

Polarization effects through rotation in heavy-ion collisions? Yes!
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Noncentral heavy-ion collisions

Picture from W. Florkowski, R. Ryblewski and A. Kumar, Prog. Part. Nucl. Phys. 108, 103709 (2019)

Noncentral nuclear collisions ⇒ Large global angular momentum
⇒ Vorticity of hot and dense matter ⇒ particle polarization along vorticity
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Experimental observation - Global Λ polarization
I Polarization along global angular momentum
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L. Adamczyk et al. (STAR), Nature 548 62-65 (2017)

  

Evidence of L polarization 
in relativistic heavy ion collisions 

STAR collaboration, Nature 548 (2017) 62 

M. Lisa, talk given at Chirality 2016 UCLA

I Weak decay: Λ→ p + π− angular distr.: dN/d cos θ = 1
2 (1 + α|~PH | cos θ)

I Quark-gluon plasma is the "most vortical fluid ever observed"

ω = (PΛ + PΛ̄)kBT/~ ≈ (9 + 1)× 1021s−1

Great Red Spot of Jupiter 10−4 s−1, Turbulent flow superfluid He-II 150 s−1,
Superfluid nanodroplets 107 s−1
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Experiments vs theory: Λ polarization
Global - along J
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Πµ(x , p) ∝ (1−nF )εµνρτpν$ρτ

$ρτ = − 1
2 (∂ρβτ − ∂τβρ)

Becattini et al An. Phys. (2013)

Longitudinal - along beam axis
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F. Becattini, I Karpenko, PRL 120, 012302
I Theory assumes local equilibrium of spin degrees of freedom
I “Sign problem” between theory and experiments for longitudinal polarization!
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Does spin play a dynamical role in hydro?

I Relativistic hydrodynamics is a good effective theory: ∂µTµν = 0

Goal: Relativistic hydrodynamics (classical) with spin (quantum) as
dynamical variable

W. Florkowski, B. Friman, A. Jaiswal, and E. S., Phys. Rev. C 97, no. 4, 041901 (2018)
W. Florkowski, B. Friman, A. Jaiswal, R. Ryblewski, and E. S., Phys. Rev. D 97, no. 11, 116017 (2018)
W. Florkowski, F. Becattini, and E. S., Acta Phys. Polon. B 49, 1409 (2018)
F. Becattini, W. Florkowski, E. S., Phys. Lett. B 789, 419 (2019)
S. Bhadury, W. Forkowski, A. Jaiswal, A. Kumar, R. Ryblewski, 2002.03937, 2008.10976 (2020)
S. Shi, C. Gale, S. Jeong, 2008.08618 (2020)

Starting point: Kinetic theory from quantum field theory

N. Weickgenannt, X.l. Sheng, E. S., Q. Wang, and D. H. Rischke, Phys. Rev. D 100, no. 5, 056018 (2019)
N. Weickgenannt, E. S., X.l. Sheng, Q. Wang, and D. H. Rischke, 2005.01506 (2020)

I Alternative approaches: Lagrangian formulation, entropy current
D. Montenegro, L. Tinti, G. Torrieri, PRD 96, 056012 (2017)
D. Montenegro, G. Torrieri, 2004.10195 (2020)
K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo, and H. Taya, PLB795, 100 (2019)
K. Fukushima, S. Pu, 2010.01608 (2020)
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Orbital-to-spin angular momentum conversion

Our results:

I How do we describe the orbital-to-spin angular momentum conversion
in kinetic theory?

Nonlocal particle scatterings (finite impact parameter)

I And in hydrodynamics?

Antisymmetric part of energy-momentum tensor
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Nonrelativistic kinetic theory
BAND 21 a ZEITSCHRIFT FÜR NATURFORSCHUNG HEFT 10 

Kinetic Theory for a Dilute Gas of Particles with Spin 

S. HESS a n d L . WALDMANN 

Institut für Theoretische Physik der Universität Erlangen-Niirnberg. Erlangen 

(Z. Naturforschg. 21 a , 1529—1546 [1966] ; received 6 April 1966) 

The kinetic theory of particles with spin previously developed for a LoRENTzian gas is extended 
to the case of a pure gas. In part A the transport (BOLTZMANN) equation for the one particle dis-
tribution operator is stated and discussed (conservation laws, H-theorem). A magnetic field acting 
on the magnetic moment of the particles is incorporated throughout. In part B the pertaining linear-
ized collision operator and certain bracket expressions linked with this operator are considered. 
Part C deals with the expansion of the distribution operator and of the linearized transport equation 
with respect to a complete set of composite irreducible tensors built from the components of par-
ticle velocity and spin. Thus, the distribution operator is replaced by a set of tensors depending 
only on time and space-coordinates. The physical meaning of these tensors (expansion coefficients) 
is invoked. They obey a set of coupled first-order differential equations (transport-relaxation equa-
tions) . The reciprocity relations for the relaxation matrices are stated. Finally a detailed discussion 
of angular momentum conservation is given. 

The transport equation for particles with spin, 
first derived by one of us 1 and again by SNIDER 2 , 

differs from the classical BOLTZMANN equation for the 
monatomic gas in two respects: (1) the classical one 
particle distribution function is replaced by a func-
tion dependent on the spin operator too or — what 
is the same — by a matrix with respect to spin 
indices; (2) the collision term contains the scatter-
ing amplitude and its adjoint in a bilinear way 
rather than simply a scattering cross section. 

A s the simplest application the diffusion of spin 

one half particles through an irregular lattice 

(LoRENTzian gas) has been s t u d i e d 3 . T h e structure 

of the distribution matrix was investigated in detail ; 

neglecting its of f -diagonal elements might cause an 

error in the dif fusion coefficient comparable with the 

error caused b y neglecting the effect of non-spheri -

cal (spin-dependent) interaction on the cross section 

itself 4 ' 5 . In addition to this, the diffusion of spin 

one half particles in the precence of a h o m o g e n e o u s 

magnet ic field was studied by WALDMANN and 

KUPATT 6 . 

The generalization of these methods to a pure gas 
has been overdue for long and will now be given in 
this paper and a subsequent one. The purpose is to 
find the relations between the transport coefficients 

1 L. WALDMANN, Z. Naturforschg. 12 a, 660 [1957] ; 13 a, 609 
[1958], 

2 R. F. SNIDER, J. Chem. Phys. 32, 1051 [I960]. 
3 L. WALDMANN, Nuovo Cim. 14, 898 [1959] ; Z. Naturforschg. 

1 5 a , 1 9 [ I 9 6 0 ] . 
4 L. WALDMANN, in Proceedings of the International Seminar 

on the Transport Properties of Gases, Brown University, 
Providence R. I. [1964], p. 59. 

and the various functions of scattering angle and 

energy which occur in the b inary scattering ampli-

tude. T h e relations to be derived replace and a m p l i f y 

the wel l -known CHAPMAN—ENSKOG ^ - i n t e g r a l s f o r 

m o n a t o m i c gases without spin. T h e procedure fol-

l o w e d is in principle the same as with the LoRENTzian 

gas 3 , but in the case of arbitrary spin it is somewhat 

m o r e laborious to write d o w n the details. A n d of 

course the physical contents are richer. A t the same 

t ime it is nice to see h o w naturally the methods of 

classical kinetic theory are extended to this quantum 

case. 

The pure gas of particles with spin has meanwhile 
also been treated by MCCOURT and SNIDER 7 accord-
ing to a method which is closely akin to the original 
CHAPMAN-ENSKOG theory. We think that the relaxation 
formalism used in the present paper is desirable too 
and gives good insight into the physics involved. 
Furthermore, we have tried to give, without restric-
tive assumptions, a general treatment of the some-
what subtle theoretical questions arising in connec-
tion with angular momentum conservation. 

Of course, the case of particles with spin has its 
classical counterpart. The classically rotating mole-
cules are even more general in so far as the magnitude 
of their intrinsic molecular angular momentum is not 

5 L. WALDMANN, Quantum-Theoretical Transport Equations 
for Polyatomic Gases, in Statistical Mechanics of Equili-
brium and Non-Equilibrium, ed. J. MEIXNER, Amsterdam 
1965, p. 177. 

6 L. WALDMANN and H.-D. KUPATT, Z. Naturforschg. 18 a, 86 
[1963]. 

7 F. R. Mc COURT and R. F. SNIDER, J. Chem. Phys. 41, 3185 
[1964]. 
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Download Date | 1/17/19 5:08 PM

I "There is another effect which we cannot describe with a local collision
operator: the orientation of the spin by a local or uniform rotation of the
system (Barnett effect)"

I Caveat: Nonrelativistic Barnett effect =⇒ Magnetization
Heavy-ion collisions =⇒ Spin polarization without magnetization
(Spin particles + Spin antiparticles)
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Wigner function

W (x , p) =

∫
d4 y

(2π~)4 e
− i

~ p·y 〈: Ψ̄(x +
y

2
)Ψ(x − y

2
) :〉

I Dirac equation =⇒ Equation of motion for Wigner function
H.-Th. Elze, M. Gyulassy, and D. Vasak, Ann. Phys. 173 (1987) 462

de Groot, van Leeuwen, van Weert, Relativistic Kinetic Theory. Principles and Applications[
γ ·
(
p + i

~
2
∂

)
−m

]
W (x , p) = ~

∫
d4y

(2π~)4 e
− i

~ p·y
〈

: ρ(x − y

2
)ψ̄(x +

y

2
) :
〉

= ~ C

ρ = −(1/~)∂LI/∂ψ̄, LI = interaction Lagrangian

I =⇒ Boltzmann equation and on-shell modification

p · ∂W (x , p) = C

(
p2 −m2 − ~2

4
∂2
)
W (x , p) = ~δM

I Idea: Find approximate solution by expanding in powers of ~
and truncate at first order, e.g.

W = W (0) + ~W (1) +O(~2)
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Calculating the Wigner function

I Clifford decomposition

W =
1
4

(
F + iγ5P + γµVµ + γ5γµAµ +

1
2
σµνSµν

)
I Determine Vµ and Aµ from equations of motion
I Assumption: polarization effects at least O(~)

Vµ =
1
m
pµF̄ +O(~2), F̄ ≡ F − ~

m2 p
µReTr(γµC)

I Transport equations:

p · ∂F̄ = mCF , p · ∂Aµ = mCµ
A

with CF = 2ImTr(C), Cµ
A ≡ −

1
m ε

µναβpν ImTr(σαβC)
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Spin in phase space

I In order to account for spin dynamics enlarge phase space
J. Zamanian, M. Marklund, and G. Brodin, NJP 12, 043019 (2010)
W. Florkowski, R. Ryblewski, and A. Kumar, Prog. Part. Nucl. Phys. 108, 103709 (2019)

I Introduce new phase-space variable sµ

f(x , p, s) ≡ 1
2
[
F̄(x , p)− s · A(x , p)

]
I Obtain F̄ and Aµ via

F̄ =

∫
dS(p) f(x , p, s) Aµ =

∫
dS(p) sµf(x , p, s)

with dS(p) ≡
√

p2
√

3π
d4s δ(s2 + 3)δ(p · s)

I Boltzmann equation

p · ∂ f(x , p, s) = m C[f]

C[f] ≡ 1
2

(CF − s · CA)

I All dynamics in one scalar equation!
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Nonlocal collisions

I Expand collision term up to first order in ~-gradients

C[f] = Cl [f] + ~Cnl [f] .

Local contribution + Nonlocal contribution
I Long calculation =⇒ Intuitive result in low-density approximation:

C[f] =

∫
dΓ1dΓ2dΓ′W [f(x + ∆1, p1, s1)

×f(x + ∆2, p2, s2)− f(x + ∆, p, s)f(x + ∆′, p′, s′)]

+

∫
dΓ2 dS1(p)Wf(x + ∆1, p, s1)f(x + ∆2, p2, s2)

dΓ ≡ d4p dS(p)
I Structure: Momentum and spin exchange + Spin exchange only
I Nonlocal Collisions =⇒ Displacement ∆
I W, W vacuum transition probabilities, depend on phase-space spins

Condition for C[f] = 0 =⇒ Global equilibrium
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Equilibrium distribution function

I Equilibrium condition: Collision term has to vanish
I Ansatz for distribution function

F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, AP. 338, 32 (2013)
W. Florkowski, R. Ryblewski, and A. Kumar, Prog. Part. Nucl. Phys. 108, 103709 (2019)

feq(x , p, s) =
m

(2π~)3 exp
[
−β(x) · p +

~
4

Ωµν(x)Σµν
s

]
δ(p2 −M2)

I βµ = uµ

T - Lagrange multiplier for 4-momentum conservation
I Spin potential Ωµν - Lagrange multiplier for total angular momentum

conservation
I M - mass possibly modified by interactions
I Spin-dipole-moment tensor

Σµν
s ≡ −

1
m
εµναβpαsβ

I Insert into C[f] and expand up to first order in ~
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Equilibrium conditions

C[feq] = −
∫

dΓ′dΓ1dΓ2 W̃ e−β·(p1+p2)

×
[
∂µβν

(
∆µ

1 p
ν
1 + ∆µ

2 p
ν
2 −∆µpν −∆′µp′ν

)
− 1

2
Ωµν

~
2
(
Σµνs1 + Σµνs2 − Σµνs − Σµνs′

)]
−
∫

dΓ2 dS1(p)dS ′(p2)W e−β·(p+p2)

×
{
∂µβν

[
(∆µ

1 −∆µ)pν + (∆µ
2 −∆′µ)pν2

]
− 1

2
Ωµν

~
2

(Σµνs1 + Σµνs2 − Σµνs − Σµνs′ )

}
.

I Conservation of total angular momentum (orbital+spin) in a collision

jµν = ∆µpν −∆νpµ +
~
2

Σµνs

I Conditions for vanishing collision term

∂µβν + ∂νβµ= 0

Ωµν = $µν≡ −
1
2

(∂µβν − ∂νβµ) = const.

Global equilibrium!
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Spin hydrodynamics

I Hydrodynamic densities:
Energy-momentum tensor Tλν

Total angular momentum tensor

Jλ,µν ≡ xµTλν − xνTλµ + ~Sλ,µν

Additional dynamical tensor: Spin tensor Sλ,µν

I 10 equations of motion: 4 usual hydro + 6 due to total angular momentum
conservation

∂µT
µν = 0 ~ ∂λSλ,µν = T [νµ]

Antisymmetric part: T [νµ] = T νµ − Tµν

I 10 unknowns: 4 + 6 additional independent fields (spin potential)

βµ =
uµ

T
Ωµν

Plus dissipative quantities

W. Florkowski, B. Friman, A. Jaiswal, and E. S., PRC 97, no. 4, 041901 (2018)
W. Florkowski, B. Friman, A. Jaiswal, R. Ryblewski, and E. S., PRD 97, no. 11, 116017 (2018)
W. Florkowski, F. Becattini, and E. S., APB 49, 1409 (2018)
W. Florkowski, F. Becattini, and E. S., PLB 789, 419 (2019)
K. Hattori, M. Hongo, X.-G. Huang, M. Matsuo, and H. Taya, PLB795, 100 (2019)
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Pseudo-gauge transformations
Densities are NOT uniquely defined =⇒ Relocalization
F. W. Hehl, Rept. Math. Phys. 9, 55 (1976), F. Becattini, W. Florkowski, and E. S., PLB 789, 419 (2019),
E. S. and N. Weickgenannt, 2007.00138 (2020)

T ′µν(x) = Tµν(x) + 1
2∂λ

[
Φλ, µν(x) + Φµ, νλ(x) + Φν, µλ(x)

]
S ′λ, µν = Sλ, µν(x)− Φλ, µν(x) + ∂ρZ

µν,λρ(x)

Φλ, µν = −Φλ, νµ, Zµν,λρ = −Zνµ,λρ = −Zµν,ρλ

I Leave global charges invariant

Pµ =

∫
d3Σλ T

λµ(x) Jµν =

∫
d3Σλ J

λ, µν(x)

Σλ - Hypersurface
I Conservation laws: ∂µT ′µν = 0 , ∂λS ′λ,µν = T ′[νµ]

I Canonical choice: apply Noether’s theorem to Dirac Lagrangian
→ Problem: does not lead to a covariant description of spin

I Solution: apply Noether’s theorem to Klein-Gordon Lagrangian for spinors
J. Hilgevoord, S. Wouthuysen, NP 40 (1963) 1
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Spin hydrodynamics with HW currents
I From kinetic theory

TµνHW =

∫
dP dS(p) pµpν f (x , p, s) +O(~2)

Sλ,µνHW =

∫
dP dS(p)pλ

(
1
2

Σµνs −
~

4m2 p
[µ∂ν]

)
f (x , p, s) +O(~2)

I Equations of motion

∂µT
µν
HW =

∫
dΓ pν C[f] = 0

~ ∂λSλ,µνHW =

∫
dΓ

~
2

Σµνs C[f] = T
[νµ]
HW

I Energy-momentum conserved in a collision

Spin not conserved in nonlocal collisions =⇒ T
[νµ]
HW 6= 0

=⇒ Conversion between spin and orbital angular momentum

I T
[νµ]
HW = 0: (i) for local collisions (spin is collisional invariant)

(ii) in global equilibrium (C[f] = 0)

I Nonlocal collisions away from global equilibrium =⇒ Dissipative dynamics
I Correct nonrelativistic limit

Hess, Waldmann (1966); G. Lukaszewicz, Micropolar Fluids, Theory and Applications (1999)

Fluid gets polarized through rotation!
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Polarization observable in heavy-ion collisions

I Polarization vector for particle with momentum pµ (e.g. Λ-hyperon)
F. Becattini, 2004.04050; E.S., N. Weickgenannt, 2007.00138; L. Tinti, W. Florkowski, 2007.04029

Πµ(p) = − ~
2m

εµναβp
ν

∫
dΣλs

λ,αβ
HW (x , p)∫

dΣλpλF

Sλ,αβHW (x) =
∫
d4p sλ,αβHW (x , p) =

∫
d4p pλSαβ(x , p)

Σλ - Hypersurface

I Equilibrium

Πµ(p) = − ~
4m

εµναβp
ν

∫
dΣλp

λf (1− f )$αβ∫
dΣλpλf

$αβ = −1
2(∂αββ − ∂ββα) - Thermal vorticity

f - Distribution function
F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Annals. Phys. 338, 32 (2013)

What are nonequilibrium effects on Πµ(p)?
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Conclusions

Summary
I Derivation of nonlocal collisions from quantum field theory

I Vanishing collision term =⇒ global equilibrium

I Spin hydrodynamics with Hilgevoord-Wouthuysen pseudo-gauge

I Antisymmetric part of energy-momentum tensor
=⇒ Orbital-to-spin angular momentum conversion
=⇒ Vanishes with local collisions or in global equilibrium

I Local collisions =⇒ Ideal spin hydrodynamics possible
Nonlocal collisions =⇒ Always dissipative dynamics

Outlook
I Derive second-order dissipative spin hydrodynamics
I Study nonequilibrium and spin hydrodynamic effects on polarization vector
I Possible explanation to "sign problem"?
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